Antagonistic forces generated by cytoplasmic dynein and myosin-II during growth cone turning and axonal retraction.

نویسندگان

  • Kenneth A Myers
  • Irina Tint
  • C Vidya Nadar
  • Yan He
  • Mark M Black
  • Peter W Baas
چکیده

Cytoplasmic dynein transports short microtubules down the axon in part by pushing against the actin cytoskeleton. Recent studies have suggested that comparable dynein-driven forces may impinge upon the longer microtubules within the axon. Here, we examined a potential role for these forces on axonal retraction and growth cone turning in neurons partially depleted of dynein heavy chain (DHC) by small interfering RNA. While DHC-depleted axons grew at normal rates, they retracted far more robustly in response to donors of nitric oxide than control axons, and their growth cones failed to efficiently turn in response to substrate borders. Live cell imaging of dynamic microtubule tips showed that microtubules in DHC-depleted growth cones were largely confined to the central zone, with very few extending into filopodia. Even under conditions of suppressed microtubule dynamics, DHC depletion impaired the capacity of microtubules to advance into the peripheral zone of the growth cone, indicating a direct role for dynein-driven forces on the distribution of the microtubules. These effects were all reversed by inhibition of myosin-II forces, which are known to underlie the retrograde flow of actin in the growth cone and the contractility of the cortical actin during axonal retraction. Our results are consistent with a model whereby dynein-driven forces enable microtubules to overcome myosin-II-driven forces, both in the axonal shaft and within the growth cone. These dynein-driven forces oppose the tendency of the axon to retract and permit microtubules to advance into the peripheral zone of the growth cone so that they can invade filopodia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microtubule transport in the axon: Re-thinking a potential role for the actin cytoskeleton.

Microtubules are transported down the axon as short pieces by molecular motor proteins. One popular idea is that these microtubules are transported by forces generated against the actin cytoskeleton. The motor for such transport is thought to be cytoplasmic dynein. Here, the authors review this model and discuss recent studies that sought to test it. These studies suggest that the model is vali...

متن کامل

RhoA-kinase coordinates F-actin organization and myosin II activity during semaphorin-3A-induced axon retraction.

Axon guidance is mediated by the effects of attractant and repellent guidance cues on the cytoskeleton of growth cones and axons. During development, axon retraction is an important aspect of the pruning of inappropriately targeted axons in response to repellent guidance cues. I investigated the roles of RhoA-kinase and myosin II in semaphorin-3A-induced growth cone collapse and axon retraction...

متن کامل

Antagonistic forces generated by myosin II and cytoplasmic dynein regulate microtubule turnover, movement, and organization in interphase cells.

Photoactivation of caged fluorescent tubulin was used mark the microtubule (MT) lattice and monitor MT behavior in interphase cells. A broadening of the photoactivated region occurred as MTs moved bidirectionally. MT movement was not inhibited when MT assembly was suppressed with nocodazole or Taxol; MT movement was suppressed by inhibition of myosin light chain kinase with ML7 or by a peptide ...

متن کامل

Kinesin-5 Is Essential for Growth-Cone Turning

Inhibition of kinesin-5, a mitotic motor protein also expressed in neurons, causes axons to grow faster as a result of alterations in the forces on microtubules (MTs) in the axonal shaft. Here, we investigate whether kinesin-5 plays a role in growth-cone guidance. Growth-cone turning requires that MTs in the central (C-) domain enter the peripheral (P-) domain in the direction of the turn. We f...

متن کامل

Negative guidance factor-induced macropinocytosis in the growth cone plays a critical role in repulsive axon turning.

Macropinocytosis is a type of poorly characterized fluid-phase endocytosis that results in formation of relatively large vesicles. We report that Sonic hedgehog (Shh) protein induces macropinocytosis in the axons through activation of a noncanonical signaling pathway, including Rho GTPase and nonmuscle myosin II. Macropinocytosis induced by Shh is independent of clathrin-mediated endocytosis bu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Traffic

دوره 7 10  شماره 

صفحات  -

تاریخ انتشار 2006